

ИЗМЕРЕНИЯ В ТЕХНИКЕ СВЯЗИ

REMENTS IN COMMUNICATION

НОВЫЕ АНАЛИЗАТОРЫ СПЕКТРА AKTAKOM **NEW AKTAKOM SPECTRUM ANALYZERS**

Афонский А.А. (A. Afonskiy), доцент МГТУ им. Н.Э. Баумана

конце прошлого года в модельном ряду АКТАКОМ появились две новых модели настольных анализаторов спектра — АКС-1301 и АКС-1601. Оба анализатора имеют одинаковый внешний вид (рис. 1).

Анализатор спектра АКС-1301 универсальный анализатор спектра, рассчитанный на рабочую частоту от 9 кГц до 3 ГГц, в то время как АКС-1601 - первый в линейке АКТАКОМ анализатор спектра с полосой частот обзора до 6,2 ГГц с минимальным разрешением 1 Гц.

Рис. 1. Анализатор спектра АКТАКОМ АКС-1301

Следует отметить, что в модельном ряду АКТАКОМ достаточно давно присутствуют портативные анализаторы спектра и электромагнитного поля, такие как АКС-1201, АКС-1291, АКС-1292. Новые анализаторы спектра АКС-1301 и АКС-1601 — это профессиональные приборы с широкими возможностями и прекрасными техническими характеристиками.

Рассматриваемые в статье анализаторы отличаются хорошой полосой обзора (100 Гц/дел...300 МГц/дел), широким динамическим диапазоном (от -105 до +20 дБм без предусилителя) и высо-

Рис. 2. Лицевая панель АКС-1301

коточным генератором опорной частоты (погрешность и стабильность менее 0.5 ррт). В приборах реализована новая система цифрового частотного синтеза для высокого разрешения (до 1 Гц) при проведении частотных измерений и широкий набор фильтров ПЧ (см. таблицу). При этом фильтры ЭМС (9 и 120 кГц) идут в штатной комплектации.

Одним из основных достоинств АКС-1301 является встроенный штатный предусилитель. Типичное значение уровня собственных шумов при включенном предусилителе составляет -130 дБм, а динамический диапазон расширяется до +20дБм ... -130 дБм.

Как известно, наибольшее влияние на правильность измерения оказывают гармонические искажения 2-го порядка и интермодуляционные искажения 3-го порядка, возникающие при подаче на вход двух равноамплитудных сигналов. Для АКС-1301 значение гармонических искажений 2-го порядка составляет не более -60 дБн при уровне входного сигнала -40 дБн, а значение интермодуляционных искажений 3-го порядка составляет не более -70 дБн (типично).

Рис. 3. Установка маркера

Приборы имеют большую энергонезависимую память (900 спектров и 3000 настроек), а также встроенный USB 2.0 хост. Специалистам наверняка понравится очень удобное в навигации меню, сходное с популярными моделями спектроанализаторов HP/Agilent.

Основные параметры анализаторов спектра АСК-1301 и АКС-1601 представлены в таблице.

Приборы снабжены стандартными для спектроанализаторов автоматическими измерениями (измерение мощности в канале, соотношение мощностей в

ЧЕМ ОПРЕДЕЛЯЕТСЯ ДИНАМИЧЕСКИЙ ДИАПАЗОН Анализатора спектра

Динамический диапазон — важнейшая характеристика анализатора спектра. Этот параметр определяет максимальное отношение между двумя уровнями сигнала (максимальным и минимальным), присутствующими в сигнале, которые можно измерить с заданной точностью. Факторы, ограничивающие динамический диапазон:

Чувствительность системы, или средний отображаемый уровень шума (Displayed Average Noise Level — DANL). Действие этого фактора можно уменьшить с помощью предусилителя. Увеличение уровня сигнала ПЧ также снижает влияние этого фактора. 2. Искажения сигнала, возникающие во входном смесителе (гетеродине), усилителе ПЧ и АЦП. Наибольшое влияние на динамический диапазон оказывают гармонические искажения второго порядка и интермодуляционные искажения 3-го порядка. Повышение сигнала генератора ПЧ увеличивает влияние этих факторов, но с разной скоростью. Искажения второго порядка увеличиваются пропорционально квадрату к основному сигналу, а третьего порядка — увеличиваются пропорционально кубу. 3. Фазовый шум встроенного генератора ПЧ (нестабильность частоты и фазы).

На рисунке ниже показан динамический диапазон анализатора. По оси Х указывается уровень входного сигнала в первом гетеродине. По оси У определяется уровень внутренних генерируемых искажений в дБ. ТОІ — «точка перехвата» третьего порядка, SHI — второго порядка.

Из рисунка видно, что для лучшего соотношения сигнал/шум нужно увеличивать входной уровень на гетеродине. С другой стороны, для уменьшения внутренних искажений нам нужно уменьшить входной уровень как можно меньше. Поэтому наилучший динамический диапазон получается как компромисс между соотношением сигнал/шум и внутренне сгенерированными искажениями.

контрольно-измерительные приборы и системы **TEST & MEASURING INSTRUMENTS AND SYSTEMS**

смежных каналах, измерение полосы по уровню), маркерными измерениями, осуществляют запись спектрограмм и настроек с временными метками или профилей. Все результаты измерений отражаются на цветном 6,4" ЖК-дисплее с разрешением 640×480. Сам прибор имеет размеры 350×195×375 мм и массу 10 кг.

В списке дополнительных опций анализаторов: трэкинг-генератор, генератор сигналов CDMA, интерфейс GPIB, сумка для переноски, наборы для работы с кабельным ТВ и измерения КСВН.

Рассмотрим в качестве примера некоторые режимы работы прибора.

1. ИСПОЛЬЗОВАНИЕ КУРСОРНЫХ ИЗМЕРЕНИЙ В РЕЖИМЕ ДЕЛЬТА-МАРКЕРА

Подключим исследуемый сигнал к разъему RF INPUT (для примера взят сигнал опорной частоты встроенного генератора с разъема 10 МГц REF OUT на задней панели). Устанавливаем центральную частоту 30 МГц и полосу обзора 50 МГц. Далее выбираем значение опорного уровня 10 дБм. Следует иметь в виду, что если величина опорного уровня будет меньше 10 дБм, то величина гармоник стандартного 10 МГц сигнала будет слишком большой. Устанавливаем усреднение по 10 разверткам и маркер на пик сигнала (рис. 3).

Таблица Частотные параметры				
	AKC-1301	AKC-1601		
Частотный диапазон	9 кГц3 ГГц	9 кГц6,2 ГГц		
Разрешение	МИН	. 1 Гц		
Полоса обзора	100 Гц/дел300 МГц/дел	100 Гц/дел300 МГц/дел		
	с шаго	м 1-2-5		
	нулевая полоса обзора			
полная полоса обзора	9 кГц3 ГГц	9 кГц6,2 ГГц		
Режим выбора частоты	Начальная, конечная, централ	ьная, установка полосы обзора		
Погрешность индикации полосы обзора	±3% от индицируемой полосы обзора			
Погрешность отсчета частоты, не более	± (значение частоты × погрешность опорной частоты + полоса			
	обзора $ imes$ погрешность полосы обзора + 0,5 $ imes$ полоса			
D	пропус	скания)		
Полоса пропускания		1		
диапазон	Т КГЦЗ ІЛГЦ (1-3-10); 9 КГЦ, 100кГи	ТКІЦ6,2 ІVІІЦ (1-3-10); 9 КІЦ, 100-г.		
ROEDOULLOOTI	Т∠UKI Ц +20%/	I∠UKIЦ +20%/		
погрешность	±20%	±20%		
	15.1	15.1		
60 дБ/3 дБ 60 дБ/6 дБ (9 кГц, 120 кГц)	10.1	10.1		
погрешность переключения	не более +1 0 лБ	не более +1 0 лБ		
Попоса вилеофильтра	10 Ги. З МГи (с шагом 1-3-10)			
Фазовый шум, не более	-90 лБн/Гц (при отстройке 10 кГц)			
AIV	ИПЛИТУДНЫЕ ПАРАМЕТРЫ			
Диапазон	+20 дБм–105 дБм			
Средний уровень шума (полоса пропускан	ния без предусилителя			
1 кГц, полоса видеофильтра 10 Гц)	50 кГц150 кГц: макс. –10	50 кГц150 кГц: макс. –100 дБм		
	150 кГц1 ГГц: макс. –105	150 кі ц1 і і ц. макс. –105 дБм		
	1 II ц2,4 II ц: макс. –100	1 ПЦ2,4 ПЦ: Макс. –100 дБМ		
	2,4 11 U3 11 U. Makc. –95 J	2,4 ПЦ3 ПЦ: МАКС. –95 ДБМ (АКС-1301)		
	2,411 Ц6,211 Ц. МАКС. –95	2,411Ц6,211Ц: Макс. –95 ДБМ (АКС-1601)		
20 WI 42,7 TT 4 Make. 127 AU 2 7 FFu - 3 FFu: Make. 123 BF		лБм		
Елиницы измерения	лБм лБмВ лБмкВ В мВ	πF_{M} $\pi F_$		
Пинейность шкалы лисплея не более	+1 5 лБ/70 лБ (при масшта	+1 5 лБ/70 лБ (при масштабе 10 лБ/леп)		
	+1 5 лБ/40 лБ (при масшт	+1.5 лБ/40 лБ (при масштабе 5 лБ/леп)		
	±0.5 дБ/16 дБ (при масшта ±0.5 дБ/16 дБ (при масшта	+0.5 лБ/16 лБ (при масштабе 2 лБ/лел.)		
	±0,5 дБ/8 дБ (при масшта	±0,5 дБ/8 дБ (при масштабе 1 дБ/дел.)		

	±0,5 дБ/16 дБ (при масштабе 2 дБ/дел.) ±0,5 дБ/8 дБ (при масштабе 1 дБ/дел.)	
Неравномерность АЧХ 100 кГц10 МГц 10 МГц3 ГГц/6,2 ГГц	–3,51,5 дБ ±1,5 дБ (АКС-1301/АКС-1601)	
Опорный уровень		
диапазон	–90 дБм+20 дБм	
разрешение	0,1 дБ	
погрешность	±1,5 дБ	
Искажения по второй гармонике	не более –60 дБн при уровне входного сигнала –40 дБм	
Интермодуляционные искажения	не более –70 дБн при уровне входного сигнала –40 дБм	
Остаточные искажения	не более –85 дБм при отсутствии сигнала на нагруженном входе, ослабление аттенюатора 0 дБ)	

РАЗВЕРТКА

Время развертки	100 мс1000 с 40 мс1000 с (нулевая полоса)
Погрешность	не более ±20%
Источник запуска	автоматический, внешний (с задней панели), по видеосигналу, от сети
Режимы запуска	непрерывный; однократный
Уровень запуска	TTL

Рис. 4. Использование режима дельта-маркеров

Далее, нажав клавишу MARKER → Delta, включаем дельта-маркер и устанавливаем его на следующий пик, используя поворотный регулятор. В результате получаем в верней правой части дисплея разность между значениями частоты и амплитуды обоих маркеров (рис. 4).

На рисунке 5 показаны результаты маркерных измерений сигнала 200 МГц, имеющего ЧМ-модуляцию ±50 кГц.

2. АВТОМАТИЧЕСКОЕ ИЗМЕРЕНИЕ МОЩНОСТИ В КАНАЛЕ CDMA

Для вычисления мощности радиосигнала в канале используется метод интегрирования фильтра ПЧ (RBW). Для корректного вычисления мощности важно правильно установить ширину фильтра ПЧ в анализаторе спектра:

RBW=k×ПОЛОСУ ОБЗОРА/N, где k — значение между 1.2 и 4.0, N количество трассирующих точек (обычно равно 400).

Обычно для вычисления мощности в канале полоса видеофильтра (VBW) устанавливается в 10 раз больше, чем полоса RBW.

Подключив генератор сигналов CD-MA к входу RF INPUT прибора, подаем

Рис. 5. Использование режима дельта-маркеров при измерении ЧМ-модулированного сигнала

Рис. 6. Режим измерения мощности в канале CDMA

M3MEPEHMS B TEXHMKE CBS3M MEASUREMENTS IN COMMUNICATION

сигнал с частотой 850 МГц и амплитудой –30 дБм и включаем режим измерения мощности.

Устанавливаем центральную частоту 800 МГц и опорный уровень –30 дБм. Если задать величину интегральной полосы равную 1,23 МГц, то весь диапазон автоматически будет установлен равным 1,5×(интегральная полоса), т. е. 1,845 МГц. Получаем на экране результат измерения (рис .6).

3. ИЗМЕРЕНИЕ МОЩНОСТИ В СОСЕДНИХ Каналах

В этом режиме автоматических измерений пользователь имеет возможность задать смещение относительно основного канала. В нашем примере, если установить величину интеграль-

Рис. 7. Измерение мощности в соседнем канале CDMA

ной полосы канала равной 2 МГц и установить величину смещения частоты (Offset Freq) равной 3 МГц, то можно получить результат измерения мощности в соседнем канале CDMA (рис.7).

Рис. 8. Измерение мощности в соседних каналах СDMA (4 смещения)

Этот режим автоматических измерений позволяет измерить мощность в нескольких соседних каналах, задавая до 4 различных величин смещения относительно основного канала (рис. 8).

В качестве опции для ÅКС-1301 доступен трекинг-генератор. Его наличие позволяет существенно расширить область применения анализатора спектра. Становится доступно использование АКС-1301 для снятия АЧХ, тестирования входных трактов различных приемных устройств, антенно-фидерных трактов, фильтров и других устройств, измерения отражения и поглощения ВЧ-сигналов. Частотный диапазон трекинг-генератора 100 кГц...3 ГГц, выходной уровень 0...-50 дБм. На рис. 9 приведен пример измерения КСВН, произведенного с помощью АКС-1301 с опцией трекинг-генератора.

Спектроанализаторы AKC-1301 и AKC-1601 имеют развитые возможности сохранения результатов измерений. Прибор обеспечивает сохранение результатов измерений во внутренней памяти или на внешнем носителе USB. При подключении внешней USB-памяти сохранение, загрузку, удаление, переименование и другие действия с файлами можно осуществлять как с внешней, так и с внутренней памяти.

Рис. 9. Измерение КСВН

При установке в меню «File» пути для сохранения файлов на внешнюю USBпамять, даже после выхода из меню сохранение файлов будет осуществляться на внешнюю USB-память.

Прибор поддерживает подключение принтера через параллельный порт или через USB порт. Следует отметить, что в AKC-1301 реализован широкий выбор интерфейсов для подключения внешних устройств: USB host/device, RS-232, Centronics, GPIB (опционально) и Ethernet (опционально). В последнем случае у пользователя появляется возможность управлять анализатором спектра со своего персонального компьютера или ноутбука через Ethernet. Можно осуществлять отображение спектрограмм, их сохранение, курсорные

Рис. 10. Пример графического интерфейса программы для управления АКС-1301 и АКС-1601 через Ethernet

измерения, устанавливать полосу обзора, полосу пропускания ПЧ- и видеофильтров, управлять аттенюатором и т. п. Вид окна программы на экране компьютера представлен на рис. 10.

В заключении следует отметить, что рассмотренные анализаторы спектра АКТАКОМ АКС-1301 и АКС-1601 являются очень удачным и, главное, профессиональным решением для выполнения разнообразных измерений.

ЛИТЕРАТУРА

1. Афонский А.А., Дьяконов В.П. Современные измерительные приборы и массовые измерения, М., «Солонпресс», 2007 г.

New AKTAKOM AKC-1301 and AKC-1601 spectrum analyzers are described in this article. Their specifications, features and operating modes are presented.